Abstract

The present study examines the phase behavior of a model binary system made of OPO (1,3-dioleoyl-2-palmitoyl glycerol); a TAG (triacylglycerol) highly effective in depressing onset of crystallization of biodiesel, and MeS (methyl stearate); a prevalent saturated FAMEs (fatty acid methyl esters) in biodiesel. The thermal behavior, crystal structure and microstructure of the OPO/MeS mixtures were investigated with DSC (differential scanning calorimetry), XRD (X-ray diffraction) and PLM (polarized light microscope). The OPO/MeS system presented a phase diagram with peritectic and eutectic transitions. A simple thermodynamic modeling of the liquidus line indicated a relatively complex mixing behavior, and highlighted the prevailing effect of the peritectic compound on solubility. Different types of microstructures that were more or less influenced by MeS, OPO or/and compound microstructures were observed in the mixtures. They are associated with the crystal phases and the thermal transitions. Furthermore, MeS, OPO and compound crystal structures (monoclinic, orthorhombic and triclinic, respectively) served as templates for the crystal forms of the coexisting phases. The singularities in the liquidus line are attributed to chain length mismatch between the palmitic acid and the FAME (fatty acid methyl ester). The phase diagram achieved for OPO/MeS system is complete and can help in designing additive formulations to improve the cold flow behavior of biodiesel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call