Abstract

Herein, we report a new method of mitigating cryogenic microcracking in carbon-fibre reinforced-plastics (CFRPs) using a negative thermal-expansion nanomaterial, zirconium tungstate (ZrW2O8), to simultaneously reduce the thermal residual stresses and enhance the fracture energy of the epoxy matrix of CFRPs. The results show that 1 wt% of added ZrW2O8 nanoparticles functionalized by polydopamine can increase the fracture energy of the matrix material by 140%, reduce the coefficient of thermal expansion by 20% and, more importantly, enhance the interlaminar fracture energy of the resulting CFRP by about 100% at −196 °C. The ZrW2O8-modified matrix has been demonstrated to successfully prevent microcracking at −196 °C in a blocked cross-ply CFRP laminate with a [04/908/04] fibre architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.