Abstract
Cobalt phthalocyanine (CoPc) is a promising molecular catalyst for aqueous electroreduction of CO2, but its catalytic activity is limited by aggregation at high loadings. Codeposition of CoPc onto electrode surfaces with the coordinating polymer poly(4-vinylpyridine) (P4VP) mitigates aggregation in addition to providing other catalytic enhancements. Transmission and diffuse reflectance UV-vis measurements demonstrate that a combination of axial coordination and π-stacking effects from pyridyl moieties in P4VPserve to disperse cobalt phthalocyanine in deposition solutions and help prevent reaggregation in deposited films. Polymers lacking axial coordination, such as Nafion, are significantly less effective at cobalt phthalocyanine dispersion in both the deposition solution and in the deposited films. SEM images corroborate these findings through particle counts and morphological analysis. Electrochemical measurements show that CoPc codeposited with P4VPonto carbon electrode surfaces reduces CO2 with higher activity and selectivity compared to the catalyst codeposited with Nafion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.