Abstract

Glucose, sucrose, D(+)-xylose and α-lactose monohydrate are selected as additives relative to the negative electrolyte of Vanadium Redox Flow Battery (VRFB), with the aim of reducing vanadium permeation and improving electrochemical performance to mitigate capacity decay. The results of a charge–discharge test show that the cell with α-Lactose monohydrate in the negative electrolyte exhibits the best capacity retention. The capacity retention of a single cell employing 1 wt% α-Lactose monohydrate in the negative electrolyte was 71% after 30 cycles, which is 41.5% higher than 29.5% of the control group. Correspondingly, adding α-Lactose monohydrate into the negative electrolyte also significantly inhibits vanadium crossover and water transfer. Furthermore, the effects of additives on the performance of the negative electrolyte are studied by thermal stability experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The stability experiments indicate that the introduction of 1 wt% α-Lactose monohydrate can elevate the stability of the negative electrolyte at low temperatures. The electrochemical measurements indicate that V(III) electrolyte with 1 wt% α-Lactose monohydrate obtains superior electrochemical activity and reversibility, which can be ascribed to the fact that the hydroxyl group carried by the additive provides more active sites for the redox reaction. Herein, the study provides a meaningful reference for mitigating the capacity decay of VRFB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.