Abstract

Variational quantum algorithms (VQAs) are widely applied in the noisy intermediate-scale quantum era and are expected to demonstrate quantum advantage. However, training VQAs faces difficulties, one of which is the so-called barren plateaus (BPs) phenomenon, where gradients of cost functions vanish exponentially with the number of qubits. In this paper, inspired by transfer learning, where knowledge of pre-solved tasks could be further used in a different but related work with training efficiency improved, we report a parameter initialization method to mitigate BP. In the method, a small-sized task is solved with a VQA. Then the ansatz and its optimum parameters are transferred to tasks with larger sizes. Numerical simulations show that this method could mitigate BP and improve training efficiency. A brief discussion on how this method can work well is also provided. This work provides a reference for mitigating BP, and therefore, VQAs could be applied to more practical problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call