Abstract

The issue of airborne microplastics (AMPs) pollution is receiving increasing attention, but effective solutions are still limited. In this study, AMPs were collected in pairs from an open space and under a tree (Ficus virens) in the suburb of Chengdu, southwest China, to investigate the current pollution status. The meteorological factors and underlying surface types were analyzed to investigate whether these factors could influence and mitigate the pollution of AMPs. The results showed that the fibrous AMPs accounted for the vast majority and the dominant polymers were polypropylene-polyethylene (PP-PE) and polypropylene (PP), with an average deposition flux of AMPs of 192 n/m2/d (22.41 µg/m2/d). Rainfall was found to have the prolonged scavenging efficiency for AMPs, which could extend to 8 to 48 hours after the end of rainfall, and this is a new insight into the relationship with meteorological factors. Interactions between the key underlying surface types and AMPs were also studied. The representative tree species (Ficus virens) had a low interception rate of 6.25% for AMPs and retained mainly small-sized AMPs and more fibers. The masses of AMPs loaded into Chengdu rivers could reach 1149 kg annually, with the unit mass load of 13.6 kg/km2 in urban rivers and 8.2 kg/km2 in suburban rivers. The masses intercepted by trees and bushes throughout the city only offset the masses loading in rivers, and open or sparse buildings were found to be sensitive areas for AMPs, which indicated the urgent need to control and mitigate the pollution of AMPs, especially in these sensitive areas. This work comprehensively analyzed the AMPs pollution from various perspectives and attempted to find ways to mitigate this pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.