Abstract

The objective of this study was to detect the effects of acute aflatoxin B1 (AFB1) exposure in Nile tilapia (Oreochromis niloticus) and the effectiveness of Saccharomyces cerevisiae and silicate in reducing these effects. Two hundred and forty Nile tilapia fingerlings (16 ± 0.5g) were randomly assigned to four experimental groups, each with 60 fish and three replicates. Control basal diet (Diet 1) and three test diets were formulated, where Diet 2 was supplemented with 200ppb AFB1. Diets 3 and 4 were intoxicated with AFB1 (200ppb) and supplemented with 0.5% S. cerevisiae or 0.5%, respectively. After 60days, Diet 1 had considerably greater growth characteristics than the other groups (p < 0.05). Diet 2 revealed a reduced (p < 0.05) survival rate after 1month of exposure. In addition, Diet 1 showed higher (p < 0.05) total protein and albumin levels than Diets 3 and 4. AFB1 residues were detected in the liver in fish-fed Diet 2, Diet 4, and Diet 3. Alanine aminotransferase, aspartate aminotransferase, creatinine, and urea levels increased (p < 0.05) in fish-fed Diet 2. The glutathione peroxidase, lysozyme, and catalase activity were decreased (p < 0.05) in the fish-fed Diet 2. The malondialdehyde level was significantly higher in fish given Diet 2 (p < 0.05) than in fish-fed Diets 3 and 4. Histopathological investigation of fish-fed Diet 2 revealed impaired liver and spleen; however, both treatments (Diets 3 and 4) successfully lowered inflammation and preserved liver and spleen integrities. In conclusion, AFB1 impaired growth performance and posed a severe health risk to Nile tilapia. Furthermore, S. cerevisiae alleviated the contamination of AFB1 effects more efficiently than silicate employed for toxin adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call