Abstract
Genome size differences among crop plants are largely due to unequal accumulation of repetitive DNA sequences, mainly transposable elements (TEs). Over the past decade, many families of miniature inverted-repeat transposable elements (MITEs) have been identified and characterized in a variety of organisms including animals and plants. MITEs are characterized by short terminal inverted repeats (TIRs) (10-15 bp), small size (approx 100 to 500 bp), high-copy-number (approx 1000 to 15,000 per haploid genome), and a preference for insertion into 2-bp to 3-bp targets that are rich in A and T residues. In this chapter, we present a modified transposon display procedure based on the maize MITE family Heartbreaker (Hbr). This technique is similar to AFLP in which AFLP adaptors are ligated to compatible ends of digested genomic DNA. Subsets of Hbr-containing fragments are then amplified using one AFLP primer and another primer complementary to an internal sequence of the Hbr element. Like AFLP, the Hbr display method permits the simultaneous analysis of numerous DNA fragments. Given the plethora of available marker systems, the major advantage of Hbr markers, and perhaps most MITE-based markers, is a preference for insertion in or near transcriptionally active genomic regions. This feature may be especially valuable in the large genomes of agriculturally important plants like maize, wheat, and barley where gene-rich islands are thought to exist in a sea of retrotransposons. Having a class of markers that are enriched in genic regions, coupled with the ease of isolating MITE markers, could expedite chromosome walks and map-based cloning protocols in these organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.