Abstract

An alternative to using normally distributed random effects in a generalized linear mixed model for clustered data is based on assuming discrete random effects. This approach gives rise to a flexible class of finite-mixture models for multilevel and longitudinal data. A general Hausman-type misspecification test is proposed for these models based on the comparison between the marginal and the conditional maximum likelihood estimators of the regression parameters, focusing on the case of binary and ordered response variables. The test is simple to perform and it is particularly useful in detecting the possible correlation between the random effects and individual covariates, a situation often faced by practitioners and that causes severe inconsistency. This type of dependence is accounted for by suitable extensions of classical finite-mixture models. The approach is illustrated by a series of simulations and two empirical examples covering important fields of application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.