Abstract

To stimulate renal water reabsorption, vasopressin induces phosphorylation of Aquaporin-2 (AQP2) water channels at S256 and their redistribution from vesicles to the apical membrane, whereas vasopressin removal results in AQP2 ubiquitination at K270 and its internalization to multivesicular bodies (MVB). AQP2-E258K causes dominant nephrogenic diabetes insipidus (NDI), but its subcellular location is unclear, and the molecular reason for its involvement in dominant NDI is unknown. To unravel these, AQP2-E258K was studied in transfected polarized Madin-Darby canine kidney (MDCK) cells. In MDCK cells, AQP2-E258K mainly localized to MVB/lysosomes (Lys). Upon coexpression, wild-type (wt) AQP2 and AQP2-E258K formed multimers, which also localized to MVB/Lys, independent of forskolin stimulation. Orthophosphate labeling revealed that forskolin increased phosphorylation of wt-AQP2 and AQP2-E258K but not AQP2-S256A, indicating that the E258K mutation does not interfere with the AQP2 phosphorylation at S256. In contrast to wt-AQP2 but consistent with the introduced protein kinase C (PKC) consensus site, AQP2-E258K was phosphorylated by phorbol esters. Besides the 29-kDa band, however, an additional band of about 35 kDa was observed for AQP2-E258K only, which represented AQP2-E258K uniquely monoubiquitinated at K228 only. Analysis of several mutants interfering with AQP2-E258K phosphorylation, and/or ubiquitination, however, revealed that the MVB/lysosomal sorting of AQP2-E258K occurred independent of its monoubiquitination or phosphorylation by PKC. Instead, our data reveal that the loss of the E258 in AQP2-E258K is fundamental to its missorting to MVB/Lys and indicate that this amino acid has an important role in the proper structure formation of the C-terminal tail of AQP2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call