Abstract
Remarkable advances in age dating Mississippi Valley-type (MVT) lead–zinc deposits provide a new opportunity to understand how and where these deposits form in the Earth's crust. These dates are summarized and examined in a framework of global tectonics, paleogeography, fluid migration, and paleoclimate. Nineteen districts have been dated by paleomagnetic and/or radiometric methods. Of the districts that have both paleomagnetic and radiometric dates, only the Pine Point and East Tennessee districts have significant disagreements. This broad agreement between paleomagnetic and radiometric dates provides added confidence in the dating techniques used. The new dates confirm the direct connection between the genesis of MVT lead–zinc ores with global-scale tectonic events. The dates show that MVT deposits formed mainly during large contractional tectonic events at restricted times in the history of the Earth. Only the deposits in the Lennard Shelf of Australia and Nanisivik in Canada have dates that correspond to extensional tectonic events. The most important period for MVT genesis was the Devonian to Permian time, which corresponds to a series of intense tectonic events during the assimilation of Pangea. The second most important period for MVT genesis was Cretaceous to Tertiary time when microplate assimilation affected the western margin of North America and Africa–Eurasia. There is a notable paucity of MVT lead–zinc ore formation following the breakup of Rodinia and Pangea. Of the five MVT deposits hosted in Proterozoic rocks, only the Nanisivik deposit has been dated as Proterozoic. The contrast in abundance between SEDEX and MVT lead–zinc deposits in the Proterozoic questions the frequently suggested notion that the two types of ores share similar genetic paths. The ages of MVT deposits, when viewed with respect to the orogenic cycle in the adjacent orogen suggest that no single hydrologic model can be universally applied to the migration of the ore fluids. However, topographically driven models best explain most MVT districts. The migration of MVT ore fluids is not a natural consequence of basin evolution; rather, MVT districts formed mainly where platform carbonates had some hydrological connection to orogenic belts. There may be a connection between paleoclimate and the formation of some MVT deposits. This possible relationship is suggested by the dominance of evaporated seawater in fluid inclusions in MVT ores, by hydrological considerations that include the need for multiple-basin volumes of ore fluid to form most MVT districts, and the need for adequate precipitation to provide sufficient topographic head for topographically-driven fluid migration. Paleoclimatic conditions that lead to formation of evaporite conditions but yet have adequate precipitation to form large hydrological systems are most commonly present in low latitudes. For the MVT deposits and districts that have been dated, more than 75% of the combined metal produced are from deposits that have dates that correspond to assembly of Pangea in Devonian through Permian time. The exceptional endowment of Pangea and especially, North America with MVT lead–zinc deposits may be explained by the following: (1) Laurentia, which formed the core of North America, stayed in low latitudes during the Paleozoic, which allowed the development of vast carbonate platforms; (2) intense orogenic activity during the assembly of Pangea created ground preparation for many MVT districts through far-field deformation of the craton; (3) uplifted orogenic belts along Pangean suture zones established large-scale migration of basin fluids; and (4) the location of Pangea in low latitudes with paleoclimates with high evaporation rates led to the formation of brines by the evaporation of seawater and infiltration of these brines into deep basin aquifers during Pangean orogenic events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.