Abstract
In this paper we propose to exploit so called Mission Profiles to address increasing requirements on safety and power efficiency for automotive power ICs. These Mission Profiles constrain the required device performance space to valid application scenarios. Mission Profile data can be represented in arbitrary forms like temperature histograms or cumulated drive cycle data. Hence, the derivation of realistic verification scenarios on device level requires the generation of environmental properties as e.g. temperatures, board net conditions or currents. For the assessment of real application robustness we present a methodology to extract finite state machines out of measured vehicle data and integrate them in Mission Profiles. Subsequently Markov processes are derived from these finite state machines in order to automatically generate Mission Profile compliant test scenarios for the design and verification process. As a motivating example we show industry fault cases in which missing application fitness to power transient variations finally results in device failure. Verification results based on lab data are outlined and show the benefits of a fully mission profile driven IC verification flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.