Abstract
This paper provides statistical analysis for efficient detection of signal components when missing data samples are present. This analysis is important for both the areas of L-statistics and compressive sensing. In both cases, few samples are available due to either noisy sample elimination or random undersampling signal strategies. The analysis enables the determination of the sufficient number of observation and as such the minimum number of missing samples which still allow proper signal detection. Both single component and multicomponent signals are considered. The results are verified by computer simulations using different component frequencies and under various missing-available samples scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.