Abstract
On large angular scales (≳60°), the two-point angular correlation function of the temperature of the cosmic microwave background (CMB), as measured (outside of the plane of the Galaxy) by the Wilkinson Microwave Anisotropy Probe, shows significantly lower large-angle correlations than expected from the standard inflationary cosmological model. Furthermore, when derived from the full CMB sky, the two lowest cosmologically interesting multipoles, the quadrupole (ℓ = 2) and the octopole (ℓ = 3), are unexpectedly aligned with each other. Using randomly generated full-sky and cut-sky maps, we investigate whether these anomalies are correlated at a statistically significant level. We conclusively demonstrate that, assuming Gaussian random and statistically isotropic CMB anisotropies, there is no statistically significant correlation between the missing power on large angular scales in the CMB and the alignment of the ℓ = 2 and ℓ = 3 multipoles. The chance to measure the sky with both such a lack of large-angle correlation and such an alignment of the low multipoles is thus quantified to be below 10 −6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.