Abstract

We argue that existing methods for the treatment of missing observations in time-varying parameter observation-driven models lead to inconsistent inference. We provide a formal proof of this inconsistency for a Gaussian model with time-varying mean. A Monte Carlo simulation study supports this theoretical result and illustrates how the inconsistency problem extends to score-driven and, more generally, to observation-driven models, which include well-known models for conditional volatility. To overcome the problem of inconsistent inference, we propose a novel estimation procedure based on indirect inference. This easy-to-implement method delivers consistent inference. The asymptotic properties of the new method are formally derived. Our proposed estimation procedure shows a promising performance in a Monte Carlo simulation exercise as well as in an empirical study concerning the measurement of conditional volatility from financial returns data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.