Abstract

Current methodologies of genome-wide single-nucleotide polymorphism (SNP) genotyping produce large amounts of missing data that may affect statistical inference and bias the outcome of experiments. Genotype imputation is routinely used in well-studied species to buffer the impact in downstream analysis, and several algorithms are available to fill in missing genotypes. The lack of reference haplotype panels precludes the use of these methods in genomic studies on non-model organisms. As an alternative, machine learning algorithms are employed to explore the genotype data and to estimate the missing genotypes. Here, we propose an imputation method based on self-organizing maps (SOM), a widely used neural networks formed by spatially distributed neurons that cluster similar inputs into close neurons. The method explores genotype datasets to select SNP loci to build binary vectors from the genotypes, and initializes and trains neural networks for each query missing SNP genotype. The SOM-derived clustering is then used to impute the best genotype. To automate the imputation process, we have implemented gtImputation, an open-source application programmed in Python3 and with a user-friendly GUI to facilitate the whole process. The method performance was validated by comparing its accuracy, precision and sensitivity on several benchmark genotype datasets with other available imputation algorithms. Our approach produced highly accurate and precise genotype imputations even for SNPs with alleles at low frequency and outperformed other algorithms, especially for datasets from mixed populations with unrelated individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call