Abstract
Standard measures of crude association in the context of a cross-sectional study are the risk difference, relative risk and odds ratio as derived from a 2x 2 table. Most such studies are subject to missing data on disease, exposure, or both, introducing bias into the usual complete-case analysis. We describe several scenarios distinguished by the manner in which missing data arise, and for each we adjust the natural multinomial likelihood to properly account for missing data. The situations presented allow for increasing levels of generality with regard to the missing data mechanism. The final case, quite conceivable in epidemiologic studies, assumes that the probability of missing exposure depends on true exposure and disease status, as well as upon whether disease status is missing (and conversely for the probability of missing disease information). When parameters relating to the missing data process are inestimable without strong assumptions, we propose maximum likelihood analysis subsequent to collecting supplemental data in the spirit of a validation study. Analytical results give insight into the bias inherent in complete-case analysis for each scenario, and numerical results illustrate the performance of likelihood-based point and interval estimates in the most general case. Adjustment for potential confounders via stratified analysis is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.