Abstract

Internet of Things (IoT) enables the seamless integration of sensors, actuators, and communication devices for real-time applications. IoT systems require good quality sensor data in order to make real-time decisions. However, values are often missing from the sensor data collected owing to faulty sensors, a loss of data during communication, interference, and measurement errors. Considering the spatiotemporal nature of IoT data and the uncertainty of the data collected by sensors, we propose a new framework with which to impute missing values utilizing Bayesian maximum entropy (BME) as a convenient means to estimate the missing data from IoT applications. Missing sensor measurements adversely affect the quality of data, and consequently the performance and outcomes of IoT systems. Our proposed framework incorporates BME in order to impute missing values in diverse IoT scenarios by making use of the combination of low- and high-precision sensors. Our approach can incorporate the measurement errors of low-precision sensors as interval quantities along with the high-precision sensor measurements, making it highly suitable for real-time IoT systems. Our framework is robust to variations in data, requires less execution time, and requires only a single input parameter, thus outperforming existing IoT data imputation methods. The experimental results obtained for three IoT data sets demonstrate the superiority of the BME framework as regards accuracy, running time, and robustness. The framework can additionally be extended to distributed IoT nodes for the online imputation of missing values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.