Abstract

Data imputation studies include reconstruction or estimation of imperfect data gaps caused by system sensing failure, and non-responsive data transmission remains an open issue. In space weather applications, imputation of ground electromagnetism is significant in capturing the complex interaction of sun–earth prior to the subsequent analysis of the space weather effects. Key contributions to the demonstration of supervised machine learning (ML) imputation approach with artificial neural network, K-nearest neighbour, support vector regression (SVR), and General Regression Neural Network (GRNN) for MAGDAS-9 ground electromagnetism dataset have not yet been established. A total of 1,585,950 data points were analysed with supervised ML models which included performance benchmark with statistical analysis namely zero value substitution, listwise deletion, mean substitution, and hot deck imputation. To achieve low reconstruction errors, different imputation models with hyperparameter tuned settings are varied, and computational time execution has been shown to contribute to imputation performance. Performance metrics measured by mean square error (MSE), mean absolute error (MAE),mean absolute percentage error (MAPE), and execution time respectively demonstrate the capability of SVR to perfectly impute missing data for all ground electromagnetism components at an average of 0.314 MSE, 0.738 MAPE, closeness to 0.510 MAE and 0.91-second at various percentage level of data missingness. A comparison with traditional imputation shows that the supervised ML with SVR model has improved imputation performance by up to 80% of data gap. The outcome of the proposed imputation will benefit space weather applications for event characterisation, which will cover a large number of missing data in the MAGDAS-9 dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.