Abstract
This paper presents a new perspective for in-station transfer flow estimation, utilising data collected by WiFi sensor system, which is critical for path choice modelling and pedestrian management. The full in-station transfer flow can be estimated by scaling up a ‘seed matrix’, which is constructed based on the identification of inter-platform transfer activities. Due to sensor failures, the main problem comes from handling the missing elements in the constructed ‘seed matrix’. We address this problem with a novel kernel-based framework, named self-measuring multi-task Gaussian process (SM-MTGP). The heterogeneous correlations in temporal features are captured by the designed task-based and input-based kernels separately. Moreover, a self-measuring kernel is designed for learning the correlations carried by the observations. The performance of the proposed method is validated with data from a busy railway station. The results show that the proposed algorithm achieves the best imputation accuracy in both accuracy and robustness, especially at high missing rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.