Abstract

This paper presents a new approach to acceleration control of STT (Skid-To-Turn) missiles. In the design and stability analysis of our autopilot, we assume perfect roll-stabilization but consider fully all other nonlinearities of the missile dynamics including the coupling effect due to bank angle. Our autopilot controller consists of a partial-linearizing controller and a dynamic compensator. The partial-linearizing controller along with a time scaled transformation can convert the nonlinear missile dynamics to the so-called normalized system which is completely independent of Mach number and almost independent of air density. The dynamic compensator is designed based on this normalized system. This normalized system greatly simplifies the design process of an autopilot controller regardless of flight conditions. Our autopilot controller can provide fast and exact set-point tracking performance but without the slow-varying conditions on angle of attack and side-slip angle required often in the prior works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.