Abstract

This paper presents the design of a missile autopilot over its flight envelop using quasi-linear parameter-varying polynomial eigenstructure assignment (PEA). The paper describes the extension of PEA to parameter-varying systems using a nonlinear missile model developed by Horton as an example. The autopilot is designed for a single-plane lateral acceleration control and a 5 degree of freedom (DOF) autopilot is also designed. Both lateral acceleration and augmented lateral acceleration outputs are considered. The lateral acceleration autopilot has nonminimum phase characteristics, and it is shown that the quasi-linear parameter-varying PEA approach can handle nonminimum phase systems unlike classic dynamic inversion techniques. Simulation results are presented over fast variations in Mach number and show that the design is robust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.