Abstract

Mucolipidosis type III (ML III, pseudo-Hurler polydystrophy), an autosomal recessive inherited disorder of lysosomal enzyme targeting is due to a defective N-acetylglucosamine 1-phosphotransferase (phosphotransferase) activity and leads to the impaired formation of mannose 6-phosphate markers in soluble lysosomal enzymes followed by their increased excretion into the serum. Mutations in the phosphotransferase gamma subunit gene (GNPTAG) have been reported to be responsible for ML III. Here we report on a 14-year-old adolescent with a mild clinical phenotype of ML III. He presented with progressive joint stiffness and swelling. Urinary oligosaccharide and mucopolysaccharide excretion was normal. Lysosomal enzyme activities were significantly elevated in the serum and decreased in cultured fibroblasts. Impaired trafficking of the lysosomal protease cathepsin D (CtsD) was confirmed by metabolic labeling of the patient's fibroblasts. Neither mutations in the GNPTAG gene nor alterations in the GNPTAG mRNA level were detected whereas the steady state concentration of the 97 kDa GNPTAG dimer was reduced. Most importantly, the patient is homozygous for a pathogenic nucleotide substitution and a polymorphism in the phosphotransferase alpha/beta subunit gene (GNPTA). The data indicate that defects in genes other than GNPTAG can be linked to ML III contributing to the variability of the phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.