Abstract

BackgroundAgouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals.ResultsThe whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour.ConclusionAccording to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.

Highlights

  • Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair

  • Our results suggest that mutations we identified in the melanocortin 1 receptor (MC1R) gene are associated with black and red coat colour, even if not in all breeds, indicating that other genetic factors are important for coat colour determination in the goat

  • Analysing and comparing the obtained sequence electropherograms, we identified five single nucleotide polymorphisms (SNPs) in the CDS (Figure 2)

Read more

Summary

Introduction

Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. A large number of coat colour phenotypes have been described in different mammalian species. This diversity is due to the presence, distribution and biochemical activity of the melanocytes in which two types of melanin pigments (eumelanins and pheomelanins, that produce black/brown and red/yellow colours, respectively) are synthesized. Extension and Agouti are the main loci that affect the relative amount of eumelanin and pheomelanin production in these cells [1]. These loci show epistatic interactions in different mammals. Dominant alleles at the Extension locus induce black pigmentation, whereas recessive alleles extend the production of pheomelanins, determining red/yellow/pale pigmentation. Mutations at the Agouti locus have, in general, opposite models of action, i.e. dominant alleles determine pheomelanic phenotypes, whereas recessive alleles cause black coat colour with a few exceptions

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.