Abstract
Improving cache performance requires understanding cache behavior. However, measuring cache performance for one or two data input sets provides little insight into how cache behavior varies across all data input sets and all cache configurations. This paper uses locality analysis to generate a parameterized model of program cache behavior. Given a cache size and associativity, this model predicts the miss rate for arbitrary data input set sizes. This model also identifies critical data input sizes where cache behavior exhibits marked changes. Experiments show this technique is within 2 percent of the hit rate for set associative caches on a set of floating-point and integer programs using array and pointer-based data structures. Building on the new model, this paper presents an interactive visualization tool that uses a three-dimensional plot to show miss rate changes across program data sizes and cache sizes and its use in evaluating compiler transformations. Other uses of this visualization tool include assisting machine and benchmark-set design. The tool can be accessed on the Web at http://www.cs.rochester.edu/research/locality
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.