Abstract

Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by marked reduction in brain size and mental retardation. Mutations in the gene MCPH1, encoding microcephalin, cause MCPH and a unique cellular phenotype with premature chromosome condensation in early G2 phase and delayed decondensation post mitosis. Here, we show that in MCPH1 patient cells, siRNAmediated depletions of condensin II subunits lead to a pronounced reduction of cells with the condensation defects in both G1 and G2 phases of the cell cycle. Similar results are obtained when microcephalin and condensin II are simultaneously depleted in HeLa cells. In contrast, depletions of condensin I subunits do not reverse the cellular phenotype. Consistently, condensin I stays in the cytoplasm in the prophase-like cells of MCPH1 patients. Our results offer a molecular explanation for the aberrant chromosome condensation in MCPH1-deficiency and provide additional evidence that condensin I and II are regulated by distinct pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.