Abstract

The Tetrahymena group I ribozyme folds into a complex three-dimensional structure for performing catalytic reactions. The catalysis depends on its catalytic core consisting of two helical domains, P4-P6 and P3-P7, connected by single stranded regions. In the folding process, most of this ribozyme folds in a hierarchical manner in which a kinetically stable intermediate determines the overall folding rate. Although the nature of this intermediate has not yet been elucidated, a mispaired P3 stem (alt-P3) appears a likely candidate. To examine the effects of the alt-P3 structure on the kinetic and thermodynamic properties of the active structure of the ribozyme or its P3-P7 domain formation, we prepared and analysed variant ribozymes in which relative stabilities of the original P3 and alt-P3 structure were altered systematically. The results indicate that the alt-P3 structure is not the major rate-limiting factor in the folding process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call