Abstract
The autocatalytic maturation of the chromophore in green fluorescent protein (GFP) was thought to require the precise positioning of the side chains surrounding it in the core of the protein, many of which are strongly conserved among homologous fluorescent proteins. In this study, we screened for green fluorescence in an exhaustive set of point mutations of seven residues that make up the chromophore microenvironment, excluding R96 and E222 because mutations at these positions have been previously characterized. Contrary to expectations, nearly all amino acids were tolerated at all seven positions. Only four point mutations knocked out fluorescence entirely. However, chromophore maturation was found to be slower and/or fluorescence reduced in several cases. Selected combinations of mutations showed nonadditive effects, including cooperativity and rescue. The results provide guidelines for the computational engineering of GFPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.