Abstract

Techniques are presented for the optimization of multi-level logic with multiple-valued input variables. The motivation for this is to tackle the input encoding problem in logic synthesis, where binary codes need to be found for the different values of a symbolic input variable. Multi-level multiple-valued optimization is used to generate constraints that are used to determine the codes. The state assignment problem in sequential logic synthesis can be approximated as an input encoding problem by ignoring the next state field, which is reasonable when the primary output logic, dominates the next state logic. A novel technique is presented for extracting common factors with multiple-valued variables, and it is shown how other multi-level optimization techniques are easily extended with multiple-valued variables. These ideas have been implemented as algorithms in the MIS-MV program. Practical issues are also presented regarding implementation. Experimental results are also given. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.