Abstract
Over-parametrization was a crucial ingredient for recent developments in inference and machine-learning fields. However a good theory explaining this success is still lacking. In this paper we study a very simple case of mismatched over-parametrized algorithm applied to one of the most studied inference problem: the planted clique problem. We analyze a Monte Carlo (MC) algorithm in the same class of the famous Jerrum algorithm. We show how this MC algorithm is in general suboptimal for the recovery of the planted clique. We show however how to enhance its performances by adding a (mismatched) parameter: the temperature; we numerically find that this over-parametrized version of the algorithm can reach the supposed algorithmic threshold for the planted clique problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.