Abstract

We investigated the homology dependency of recombination in thymidine kinase (tk)-deficient mouse fibroblasts. Cells were transfected with DNA constructs harboring a herpes tk gene (the “recipient”) rendered non-functional by an oligonucleotide containing the recognition site for endonuclease I-SceI. Constructs also contained a “donor” tk sequence that could restore function to the recipient gene through spontaneous gene conversion or via repair of a double-strand break (DSB) at the I-SceI site. Recombination events were recoverable by selection for tk-positive clones. Three different donors were used containing 16, 25, or 33 mismatches relative to the recipient. The mismatches were clustered, forming an interval of “homeology” relative to the recipient sequences. We show that when homeologous sequences were surrounded by high homology, mismatches were frequently included in gene conversion events. Notably, conversion tracts from spontaneous recombination included either all or none of the mismatches, suggesting that recombination must begin and end in high homology. This requirement was relaxed for events that occurred near an induced DSB, as a significant number of these latter conversion tracts had one end positioned within homeology. Knock-down of mismatch repair showed that incorporation of mismatches into gene conversion tracts can involve repair of mismatched heteroduplex intermediates, indicating that mismatch repair does not necessarily impede homeologous genetic exchange. Our results illustrate (1) genetic exchange between homeologous sequences in a mammalian genome is enabled by nearby homology, (2) proximity to a DSB impacts the homology requirements for where genetic exchange may begin and end, and (3) mismatch correction and previously documented anti-recombination activity are separable functions of the mismatch repair machinery in mammalian cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call