Abstract

A quartz crystal microbalance DNA hybridization biosensor, based on thiol-derivatized peptide nucleic acid (PNA) probes, offers unusual in situ differentiation of single-base mismatches. A large excess of a single-base mismatch oligonucleotide has no effect on the frequency response of the target. Such remarkable distinction between perfect matches and mismatches is illustrated by the detection of a common mutation in the p53 gene. The greater specificity of the new mass-sensitive indicatorless hybridization device over those of analogous PNA-based carbon electrodes is attributed to the formation of a PNA monolayer and the use of a hydrophilic ethylene glycol linker. The improved specificity is coupled to very fast (3-5 min) hybridization in a low-ionic-strength medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.