Abstract

O 6-Methylguanine ( O 6MeG) is important in induction of chromosome aberrations (abs), with the unusual property that new abs are produced in the second cycle after treatment; cells lacking repair by O 6-alkylguanine DNA-alkyltransferase (AGT) have more abs at the second division (M2) than at the first (M1). These second-cycle abs are likely caused by attempted correction by mismatch repair (MMR) of O 6MeG:T mispairs, since we previously showed that MMR-deficient human cells (MT1 lymphoblasts) treated with SN-1 methylating agents do not produce new abs at M2 and are resistant to killing. Here we used MMR-deficient rodent cells to examine ab induction by alkylators and by incorporated 6-thioguanine (6-tG) which produces mispairs. BrdUrd labeling was used to identify cells at first, second and third metaphase after treatment (M1, M2 and M3). MMR-deficient Chinese hamster Clone B cells were 10-fold more resistant to ab induction by methyl nitrosourea and 1-methyl-3-nitro-1-nitrosoguanidine compared to their MMR-proficient parent cells, CHO MT+. Both cell lines express AGT and can remove the methyl group from O 6MeG. Clone B has twice the AGT activity of CHO MT+, but inhibition of AGT with O 6-benzylguanine did not change ab induction, indicating that methylation tolerance of Clone B cells was due to defective MMR and not to increased repair of O 6MeG. Confirming the importance of O 6MeG in inducing abs, even when it is a minor component of the adducts induced, Clone B cells were 2-fold more resistant to ab induction by methyl methanesulfonate and dimethylsulfate, whereas they had normal sensitivity to ethyl nitrosourea and 1-ethyl-3-nitro-1-nitrosoguanidine. Clone B cells are also resistant to killing by 6-tG, and 6-tG induced few abs in MMR-deficient Clone B (6-fold lower than CHO MT+ cells). Since mispairs do not occur until the cell cycle following incorporation of 6-tG, new abs in MMR-proficient cells are expected one cell cycle later than with the methylators, i.e., at M3. As expected, in normal CHO MT+, high ab levels were seen at M3, but there was also ab induction at M2. Similarly, with methylating agents we saw higher levels of abs at M1 in the MMR-proficient CHO MT+ cells than in Clone B cells, suggesting that in the rodent cells, MMR is involved in ab formation from mispairs or modified base pairs induced in the first S-phase, such as O 6MeG:C. These rodent cells thus differ from human MT1 lymphoblasts which had similar ab levels to their normal parent cells at the first metaphase after treatment with methylators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.