Abstract

BackgroundMany coral reef fishes undergo habitat and diet shifts during ontogeny. However, studies focusing on the physiological and morphological adaptations that may prepare them for these transitions are relatively scarce. Here, we explored the body shape variation related to ontogenetic shifts in the ecology of the surgeonfish Acanthurus triostegus (Acanthuridae) from new settler to adult stages at Moorea Island (French Polynesia). Specifically, we tested the relationship between diet and habitat shifts and changes in overall body shape during the ontogeny of A. triostegus using a combination of geometric morphometric methods, stomach contents and stable isotope analysis.ResultsAfter reef settlement, stable isotope composition of carbon and nitrogen revealed a change from a zooplanktivorous to a benthic algae diet. The large amount of algae (> 75% of stomach contents) found in the digestive tract of small juveniles (25–30 mm SL) suggested the diet shift is rapid. The post-settlement growth of A. triostegus is highly allometric. The allometric shape changes mainly concern cephalic and pectoral regions. The head becomes shorter and more ventrally oriented during growth. Morphological changes are directly related to the diet shift given that a small mouth ventrally oriented is particularly suited for grazing activities at the adult stage. The pectoral fin is more anteriorely and vertically positioned and its basis is larger in adults than in juveniles. This shape variation had implications for swimming performance, manoeuvrability, turning ability and is related to habitat shift. Acanthurus triostegus achieves its main transformation of body shape to an adult-like form at size of 35–40 mm SL.ConclusionMost of the shape changes occurred after the reef colonization but before the transition between juvenile habitat (fringing reef) and adult habitat (barrier reef). A large amount of allometric variation was observed after diet shift from zooplankton to benthic algae. Diet shift could act as an environmental factor favouring or inducing morphological changes. On the other hand, the main shape changes have to be achieved before the recruitment to adult populations and start negotiating the biophysical challenges of locomotion and feeding in wave- and current-swept outer reef habitat.

Highlights

  • Many coral reef fishes undergo habitat and diet shifts during ontogeny

  • The plateau is reached in the size range of juveniles, revealing that the habitat shift undergone by A. triostegus during the recruitment

  • Overall, this study is one of the first to (1) detail quantitatively and qualitatively the complete ontogenetic shape changes of a surgeonfish occurring after reef settlement and to (2) highlight a mismatch between morphological changes and ecological shifts in coral reef fishes

Read more

Summary

Introduction

Many coral reef fishes undergo habitat and diet shifts during ontogeny. We tested the relationship between diet and habitat shifts and changes in overall body shape during the ontogeny of A. triostegus using a combination of geometric morphometric methods, stomach contents and stable isotope analysis. Ontogenetic shifts in diet and habitat are the norm for demersal marine fishes. Most ecomorphological investigations have studied the relationships between ontogenetic diet shifts and the changes in oral anatomy [9,10,11]. Analyses of covariation between feeding habits and external body shape were successfully applied in marine fish inhabiting coastal waters of Mediterranean seas [12,13,14,15] whereas, to our knowledge, ecomorphological studies focusing on the post-settlement ontogeny of coral reef fishes are scarce [for exceptions: 16-18]. Allometry refers to the pattern of covariation between size and shape [19] and the study of ontogenetic allometry (i.e. the ontogenetic shape changes within a species when size is used as a proxy of developmental age) has provided insight into regularities of size-required changes in shape for the maintenance of function

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call