Abstract

Recent studies have shown that saccadic inward adaptation (i.e., the shortening of saccade amplitude) and saccadic outward adaptation (i.e., the lengthening of saccade amplitude) rely on partially different neuronal mechanisms. There is increasing evidence that these differences are based on differences at the target registration or planning stages since outward but not inward adaptation transfers to hand-pointing and perceptual localization of flashed targets. Furthermore, the transfer of reactive saccade adaptation to long-duration overlap and scanning saccades is stronger after saccadic outward adaptation than that after saccadic inward adaptation, suggesting that modulated target registration stages during outward adaptation are increasingly used in the execution of saccades when the saccade target is visually available for a longer time. The difference in target presentation duration between reactive and scanning saccades is also linked to a difference in perceptual localization of different targets. Flashed targets are mislocalized after inward adaptation of reactive and scanning saccades but targets that are presented for a longer time (stationary targets) are mislocalized stronger after scanning than after reactive saccades. This link between perceptual localization and adaptation specificity suggests that mislocalization of stationary bars should be higher after outward than that after inward adaptation of reactive saccades. In the present study we test this prediction. We show that the relative amount of mislocalization of stationary versus flashed bars is higher after outward than that after inward adaptation of reactive saccades. Furthermore, during fixation stationary and flashed bars were mislocalized after outward but not after inward adaptation. Thus, our results give further evidence for different adaptation mechanisms between inward and outward adaptation and harmonize some recent research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.