Abstract

Many animal models of temporal lobe epilepsy (TLE) begin with status epilepticus (SE) followed by a latency period. Increased hippocampal pyramidal neuron excitability may contribute to seizures in TLE. I h, mediated by h channels, regulates intrinsic membrane excitability by modulating synaptic integration and dampening dendritic calcium signaling. In a rat model of TLE, we found bidirectional changes in h channel function in CA1 pyramidal neurons. 1–2 d after SE, before onset of spontaneous seizures, physiological parameters dependent upon h channels were augmented and h channel subunit surface expression was increased. 28–30 d following SE, after onset of spontaneous seizures, h channel function in dendrites was reduced, coupled with diminished h channel subunit surface expression and relocalization of subunits from distal dendrites to soma. These results implicate h channel localization as a molecular mechanism influencing CA1 excitability in TLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call