Abstract

ABSTRACTStomatal responses to changes in leaf water status are critical for minimizing excessive water loss during soil drought. A major debate has surrounded the evolution of stomatal responses to water status and this debate has particularly focused on the evolution of the regulatory role of the drought hormone abscisic acid (ABA). Studies relying on the application of high levels of exogenous ABA have occasionally concluded that all stomata respond to ABA and that stomatal regulation in response to this hormone has not evolved over the past 450 million years. In contrast, studies which have investigated stomatal function in intact plants, as well as the role of endogenous ABA in regulating stomatal aperture, have found major evolutionary transitions in the functional regulation of stomata across land plant lineages. We show that endogenous ABA plays no role in closing the stomata of the fern Nephrolepis exaltata during natural soil drought, in contrast to a recent finding using isolated epidermis and exceptionally high levels of exogenous ABA. We conclude that stomatal behavior in intact plants has evolved over time, and may have shaped the evolutionary and ecological success of successive land plant lineages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call