Abstract

The synthetic DNA polymers, poly(dG-dC), poly(dC), poly(dA-dT), poly(dA) and poly(dT), were treated with N-methyl- N′-nitro- N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS) and UV irradiation. The modified polymers were use as templates to examine the incorporation of non-complementary nucleotides by E. coli DNA polymerase I. Methylation of poly(dG-dC) by MNNG predominantly induced the misincorporation of dTMP, whereas methylation by MMS induced that of dAMP. Treatment of poly(dT) with MNNG caused the misincorporation of dGMP to a considerable extent, but MMS did not enhance the error on poly(dT). The misincorporation of dAMP on poly(dC) and that of dGMP on poly(dA) were also increased by these chemicals. UV irradiation of poly(dT) and poly(dC) induced the error of dGMP and dAMP, respectively. These data on MNNG and MMS in vitro were in fair agreement with the directions of mutation in vivo. But the predominant induction of transitions by UV in vitro did not agree with the UV-induced transversions in E. coli. This inconsistency suggested the participation of other factors than direct mispairing in UV-induced transversion. Modification of DNA polymerase I by MNNG changed the ratio of polymerase to 3′→5∼ exonuclease activity altering the fidelity of this enzyme, whereas MMS and UV-irradiation did not alter the fidelity of the enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.