Abstract
xPb(In1/2Nb1/2)O3-(1-x-y)Pb(Mg1/3Nb2/3)O3-yPbTiO3 (PIN-PMN-PT) bulks possess excellent electromechanical coupling and dielectric properties, but the corresponding epitaxial PIN-PMN-PT thin films have not yet been explored. This paper adopts a nonlinear thermodynamics analysis to investigate the influences of misfit strains on the phase structures, electromechanical properties, and electrocaloric responses in epitaxial PIN-PMN-PT thin films. The misfit strain-temperature phase diagram was constructed. The results reveal that the PIN-PMN-PT thin films may exist in tetragonal c-, orthorhombic aa-, monoclinic M-, and paraelectric PE phases. It is also found that the c-M and aa-PE phase boundaries exhibit a superior dielectric constant ε11 which reached 1.979 × 106 with um = -0.494%, as well as the c-M phase boundary showing a large piezoelectric response d15 which reached 1.64 × 105 pm/V. In comparison, the c-PE and M-aa phase boundaries exhibit a superior dielectric constant ε33 over 1 × 105 around um = 0.316% and the piezoelectric response d33 reached 7235 pm/V. The large electrocaloric responses appear near the paraelectric- ferroelectric phase boundary. These insights offer a guidance for experiments in epitaxial PIN-PMN-PT thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.