Abstract

Using numerical techniques, we study the miscible-immiscible quantum phase transition in a linearly coupled binary Bose-Hubbard model Hamiltonian that can describe low-energy properties of a two-component Bose-Einstein condensate in optical lattices. With the quantum many-body ground state obtained from density matrix renormalization group algorithm, we calculate the characteristic physical quantities of the phase transition controlled by the linear coupling between two components. Furthermore we calculate the Binder cumulant to determine the critical point and draw the phase diagram. The strong-coupling expansion shows that in the Mott insulator regime the model Hamiltonian can be mapped to a spin 1/2 XXZ model with a transverse magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.