Abstract

Abstract The San Andres is a well-known dolomitic enhanced oil recovery target with low matrix permeability in the area of interest (Yoakum County, TX). A reservoir simulation study was undertaken to investigate the feasibility of using horizontal multi-fractured wells in low permeability miscible floods. A reservoir model was developed for the area of interest and was history-matched with the primary production data from the field. The model was then used to illustrate the CO2 miscible flood potential by quantifying the incremental recovery over the primary production scenario. Compositional modeling was used in the study to evaluate CO2 flooding feasibility and efficiency. A holistic workflow including PVT modeling, petrophysical analysis, geomodeling, and hydraulic fracture modeling, provided integrated input into the reservoir model. Continuous CO2 flooding was explored as an operating strategy. Furthermore, water alternating gas (WAG) cases were designed and run as a more realistic and cost-effective method of implementing miscible flooding. Based on the history-matched model, sensitivity analyses were conducted on hydraulic fracture geometry, well spacing, injection patterns and operating conditions for the primary production scenario, continuous CO2 flooding and WAG scenarios. Field surveillance and observations during the history-matching process showed that the wells had undergone damage from scaling. Sensitivity analysis showed that 300ft to 400ft cluster spacing resulted in the highest oil production during the first 10 years. Interdependent parameters such as well spacing and fracture half-length were studied together; this sensitivity review showed that the differential oil recovery from 128 acres to 160 acres was larger than that from 160 acres to 213 acres, leading to the recommendation that 160 acres could be the optimized well spacing. In the optimized design, the continuous CO2 injection case showed an incremental oil recovery of 22% (compared to primary production). The CO2 utilization factor was between 7 and 8, which was consistent with the reported value from literature. WAG sensitivity analysis showed that longer hydraulic fractures did not necessarily improve WAG efficiency, but led to earlier CO2 breakthrough. This observation confirmed our early suspicion that smaller hydraulic fracturing treatment could be a more cost-effective design for miscible flooding in this reservoir. In addition, sweep efficiency and recovery were sensitive to WAG ratio, but not to injection slug size in each cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call