Abstract
AbstractPolystyrene (PS)/ polyvinyl chloride (PVC) blends of different compositions, with and without organoclay (OC) were prepared by a solution casting method. PS and PVC were combined in ratios of 100/0, 90/10, 10/90, and 0/100. Local clay was treated with 0.5M NaCl to generate sodium clay (Na-clay). The Na-clay was subsequently modified using the cationic surfactant, cetylpyridinium chloride (CPC), at a concentration of 0.5 times that of Na-clay. The CPC-modified clay was denoted as organoclay (OC). The organoclay was dispersed in PS/PVC blends (90/10 and 10/90) with different weight percentages of OC (0%, 1%, 5%, and 10%). To evaluate the miscibility of PS/PVC blends, the blends with and without OC were characterized using Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). The addition of OC to the PS/PVC blends produced exfoliated nanocomposites, as proven by XRD. The SEM and TEM micrographs showed that the PS/PVC(10/90) blend components were more miscible than those of the PS/PVC(90/10) blend, leading to favorable morphology.
Highlights
Polymer blend nanocomposites have recently attracted attention, with attempts being made to improve the miscibility between various immiscible polymers
The structure of NaCl to generate sodium clay (Na-clay), OC, and the PS/ polyvinyl chloride (PVC) blends was analyzed using X-ray diffraction (XRD; PANALYtical X-pert PRO X-ray diffractometer, Holland), and the intensity data were collected in the 2θ range of 3−50o using a Cu-Kα source (λ = 1.54 Å) operated at a generator current of 40 mA and a generator tension of 45 KV
Organoclay from Saudi region was successfully prepared by cation exchange method using cetylpyridinium chloride as a cationic surfactant
Summary
Polymer blend nanocomposites have recently attracted attention, with attempts being made to improve the miscibility between various immiscible polymers. In. Poly(vinyl chloride) (PVC) is another important polymer that is extremely vulnerable to heat, stimulating interest in research toward achieving higher stability of the polymer. The rapid expansion and consumption of PVC is due to its lower cost and greater availability. The thermal stability of both polymers in combination is better than that of PVC or PS alone. To improve the thermal stability of PVC and PS blend in addition of nanoparticle. Literature survey reveals that the work on Saudi clay not used in PVC and PS blend for
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.