Abstract

AbstractThe power conversion efficiency of organic photovoltaics (OPVs) has witnessed continuous breakthroughs in the past few years, mostly benefiting from the extensive use of a facile ternary blending strategy by blending the host polymer donor:small molecule acceptor mixture with a second small molecule acceptor. Nevertheless, this rather general strategy used in the well‐known PM6 systems fails in constructing high‐performance P3HT‐based ternary OPVs. As a result, the efficiencies of all resulting ternary blends based on a benchmark host P3HT:ZY‐4Cl and a second acceptor are no more than 8%. Employing the mutual miscibility of the binary blends as a guide to screen the second acceptor, here we were able to break the longstanding 10%‐efficiency barrier of ternary OPVs based on P3HT and dual nonfullerene acceptors. With this rational approach, we identified a multifunctional small molecule acceptor BTP‐2Br to simultaneously improve the photovoltaic performance in both P3HT and PM6‐based ternary OPVs. Attractively, the P3HT:ZY‐4Cl:BTP‐2Br ternary blend exhibited a record‐breaking efficiency of 11.41% for P3HT‐based OPVs. This is the first‐ever report that over 11% efficiency is achieved for P3HT‐based ternary OPVs. Importantly, the study helps the community to rely less on trial‐and‐error methods for constructing ternary solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call