Abstract

Rapid improvements in organic solar cell efficiency have brought these devices into the spotlight as a potential source of abundant electricity. Despite much empirical progress, fundamental understanding is still lacking. Due to the required three-dimentional nanoscale morphology, determining structure–performance relationships has been a major challenge, and a convergent understanding has yet to emerge. We discuss recent major advances in delineating the characteristics of the most common organic solar cells. The large variations in device performance reported, the contradictory morphologies observed, and the determination of the underlying driving forces need to be resolved. Deeper understanding that can provide a roadmap to improved devices will only occur through refined consideration of material characteristics and fabrication procedures in conjunction with increased use of advanced characterization. We additionally highlight the recently discovered partial miscibility of the component materials, its influence on device processing and lifetime, and its emergance as an important indicator of stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.