Abstract

AbstractThe miscibility behavior of ternary blends made by the addition of di(ethyl‐2 hexyl) phthalate (DOP) to a mixture of chlorinated polymers was investigated by differential scanning calorimetry. Two chlorinated polymer mixtures were selected: polyvinyl chloride (PVC) with a chlorinated polyethylene containing 48 wt% Cl (CPE48), and PVC with a chlorinated PVC containing 67 wt% Cl (CPVC67). Each binary DOP/chlorinated polymer pair is miscible whereas PVC/CPE48 and PVC/CPVC67 blends are immiscible. DOP/CPE48/PVC and DOP/PVC/CPVC67 ternary blends containing, respectively, more than 55 and 20% DOP exhibit a single glass transition temperature (Tg). The spinodal between the one‐Tg zone and the two‐Tg zone is symmetrical in the two cases. At high DOP concentrations, a quantitative analysis of the results leads to the conclusion of the presence of a true ternary phase. At low DOP concentrations where two Tgs are observed, the DOP is distributed equally between the two chlorinated polymers forming, in the DOP/CPE48/PVC case for instance, two binary DOP/CPE48 and DOP/PVC phases. The broad immiscibility zone observed in the DOP/CPE48/PVC ternary blend as compared to the DOP/PVC/CPVC67 blend appears to be mainly caused by the high molecular weight of CPE48, as compared with PVC and CPVC67. © 1994 John Wiley & Sons. Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.