Abstract

AbstractBlending of two polymers in solution is a simple and cost‐effective technique to improve upon the physical and mechanical properties of the component polymers through synergism. To obtain maximum synergy in their properties, the component polymers should be miscible with each other on molecular scale. Polymer blends of complex physicomechanical properties are being actively investigated. Poly(methacrylic acid) (PMAA), a commercial polymer, yields transparent, hard, brittle, and water‐sensitive films. It has been blended with natural polymers like dextran, collagen, and gelatin to obtain films with improved physical and mechanical characteristics. Polyesteramides, which are easily synthesized from vegetable seeds oil, a sustainable resource, have found application in surface coatings. These oligomeric products do not make free standing films in the ambient condition. The polyesteramides from vegetable seeds oil can be used to obtain blend with PMMA of improved mechanical and water absorption properties. In this study, linseed oil polyesteramide (LOPEA) and dehydrated castor oil polyesteramide (DCPEA), the source oils with different unsaturation in their fatty acid chains, were blended with PMAA through mixing in solution in the ratio DCPEA/LOPEA: PMAA as 80/20, 70/30, 60/40, 50/50, 40/60, 30/70, and 20/80. In the first instance, the miscibility of the two components was investigated in solution by viscosity and ultrasonic measurements and in solid phase through differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Moisture absorption by the blend was also studied. DCPEA and LOPEA show immiscibility with PMAA in solution phase while LOPEA with more unsaturation in the fatty acid chain of the oil was found more immiscible than DCPEA. DCPEA shows a narrow miscibility window in the solid phase while LOPEA was found immiscible with PMAA in the solid phase too. Uptake of moisture was found to be markedly reduced in the blends of DCPEA/LOPEA with PMAA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1367–1374, 2007:

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call