Abstract

This paper proposes a multiple-lens receiver scheme to increase the misalignment tolerance of an underwater optical wireless communications link between an autonomous underwater vehicle (AUV) and a sensor plane. An accurate model of photon propagation based on the Monte Carlo simulation is presented which accounts for the lens(es) photon refraction at the sensor interface and angular misalignment between the emitter and receiver. The results show that the ideal divergence of the beam of the emitter is around 15° for a 1 m transmission length, increasing to 22° for a shorter distance of 0.5 m but being independent of the water turbidity. In addition, it is concluded that a seven-lense scheme is approximately three times more tolerant to offset than a single lens. A random forest machine learning algorithm is also assessed for its suitability to estimate the offset and angle of the AUV in relation to the fixed sensor, based on the power distribution of each lens, in real time. The algorithm is able to estimate the offset and angular misalignment with a mean square error of 5 mm (6 mm) and 0.157 rad (0.174 rad) for a distance between the transmitter and receiver of 1 m and 0.5 m, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.