Abstract

In recent years, progress has been made in developing techniques to detect mechanical faults in actuators driven by induction motors. The latest developments show their capability to detect faults from the analysis of the motor electrical variables. The techniques are based on the analysis of the Motor Current Signature Analysis (MCSA) and the Load Torque Signature Analysis (LTSA), among others. Thus, failures such as misalignment between the motor and load, progressive gear teeth wear, and mass imbalances have been successfully detected. In case of misalignment between the motor and load, both angular and radial misalignment, the results presented in literature do not consider the characteristics of the coupling device. In this work, it is studied a mechanism in which the power transmission between the motor and load is performed by means of different types of couplings, mainly those most frequently used in industry. Results show that the conclusions drawn for a particular coupling are not necessarily applicable to others. Finally, this paper presents data of interest for the development of algorithms or expert systems for fault detection and diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.