Abstract

AbstractWe report the theoretical study of excitation efficiency in the presence of possible transverse and angular misalignments in the case of excitation of single-mode circular core dispersion-shifted and dispersion-flattened fiber by laser diode via hemispherical microlens on the tip of the fiber. The present study takes into consideration limited aperture allowed by the hemispherical microlens. Employing ABCD matrix technique involving refraction of paraxial rays by a hemispherical microlens on the fiber tip, we formulate analytical expressions for the coupling efficiencies in the presence of the said misalignments. The estimations of the concerned efficiencies as well as associated losses by using our formulations will require little computations. But the results found are sufficiently accurate and the execution of our formalism is simple. Thus the prescribed analytical expressions are useful and new in the sense that prediction of coupling optics can be made accurately but in a simple manner without requiring lengthy numerical integrations concerned with conventional phase model technique. Moreover, the present study, as per our knowledge till date, being the first theoretical investigation of excitation efficiency for the said type of coupling device, will benefit the experimentalists, designers and packagers who are working in the field of optimum launch optics involving such coupler.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call