Abstract

Abstract We report our analyses of the multi-epoch (2015–2017) Atacama Large Millimeter/submillimeter Array (ALMA) archival data of the Class II binary system XZ Tau at Bands 3, 4, and 6. The millimeter dust-continuum images show compact, unresolved (r ≲ 15 au) circumstellar disks (CSDs) around the individual binary stars, XZ Tau A and B, with a projected separation of ∼39 au. The 12CO (2–1) emission associated with those CSDs traces the Keplerian rotations, whose rotational axes are misaligned with each other (P.A. ∼ −5° for XZ Tau A and ∼130° for XZ Tau B). The similar systemic velocities of the two CSDs (V LSR ∼ 6.0 km s−1) suggest that the orbital plane of the binary stars is close to the plane of the sky. From the multi-epoch ALMA data, we have also identified the relative orbital motion of the binary. Along with the previous NIR data, we found that the elliptical orbit (e = 0.742 − 0.034 + 0.025 , a = 0 .″ 172 − 0 .″ 003 + 0 .″ 002 , and ω = − 54 .° 2 − 4 .° 7 + 2 .° 0 ) is preferable to the circular orbit. Our results suggest that the two CSDs and the orbital plane of the XZ Tau system are all misaligned with each other, and possible mechanisms to produce such a configuration are discussed. Our analyses of the multi-epoch ALMA archival data demonstrate the feasibility of time-domain science with ALMA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call